

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 133

SOME COMPONENT GENERATION
APPROACHES FOR E-GOVERNANCE

SYSTEMS

RATNESHWER
Dept. of Computer Science

MMV, Banaras Hindu University
Varanasi, India

ratnesh@bhu.ac.in

A K TRIPATHI
Dept. of Computer Engineering
IT, Banaras Hindu University

Varanasi, India
anilkt@bhu.ac.in

Abstract
E-governance is a plan for the national interest and in order to meet its objectives within
the given timescale, more and more applications, or at least some of their modules, must
be reusable by other software. It is possible to reuse the solutions developed for one
government, by another government. What is required at this stage is a move from more
traditional software development to a reuse based development. Component-Based
Development (CBD), an approach to develop a software system with the assistance of
reusable software components, may help to reduce the development time and costs and
will increase reliability and maintainability of such systems. This paper suggests some
component development approaches for developing software components that can be
reused in component based E-governance software systems. The proposed methodologies
can be used as a reference model for the development of software components for E-
governance solutions.

Keywords: Components, Template Component, Legacy E-Governance system

1. Introduction
A government is responsible for providing the basic services and information to its
public. For example, in a country like India, there are over 1500 organizations
[Prasad, 2003], functioning directly under the auspices of the Government of India. In
addition, similar setups are available in 28 states within the union. Overall, over five
million personnel are engaged in day to day activities of the union government and
are involved either directly or indirectly and are spanning a large spectrum of
activities. It is a challenging task to provide services and information to the public
within an appropriate timescale. E-governance, the application of advanced
information and communication technologies to improve governance, has proved to
be a better option for meeting the objectives. Governments [Backus, 2001] all around
the world are attempting to utilize ICT for various purposes. The initial motivation
usually comes from the need to improve the efficiency of processes within the

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 134

government. An additional reason may come from the need to provide various social
services to the citizens and a third reason might be to strengthen the democratic
foundations of governance (opinion polls, voting etc). For example, India is a country
of diversity, and different types of services are provided by the government, such as
central services (Income Tax, Central Excise, Passport/Visa etc), state services
(Agriculture, land records, transport etc), and integrated services (Governance
gateways, courts etc) etc. The use of ICT in governance, facilitates efficient, speedy
and transparent processes for disseminating information to the public and other
agencies and for performing the government administration activities. A large number
of software, hardware, finance and human resources will be required in this case in
order to accomplish the task. It would not be possible to fulfill all the software and
hardware requirements in one step and thus a phased approach based on a priority
basis is more appropriate. These applications should be developed in parallel in order
to reduce both the development costs and the time involved. The rationale behind
[Mittal et al., 2004] such a solution is that, as is the case in business that around 85%
of the processes are actually the same across those firms within the same industry so it
is also the expectation that 85% of the processes should be similar across different
governments. Thus it should be possible to reuse the solutions developed for one
government, for another government. What is required at this stage is to make a move
from a traditional software development to one involving a reuse based development.

Component-Based Development (CBD), an approach to develop a software
system with the assistance of reusable software components and this may help to
reduce both the development times and costs and will increase reliability and
maintainability of such systems. Component development is considered as a separate
activity in CBD. In CBD, components developed once, can be reused many times in
various applications. Software components for various E-governance services can be
developed and stored in a repository and can be used at a later stage in an E-
governance software development (using component based approach). The
availability of these components would result in both more rapid development times
and a reduction in the development costs. The idea is to design E-governance related
software components with attributes and functionalities that will always be essential
in its any deployment with some scope for the addition of, or modification in,
functionalities as per the requirements of specific state/central government
applications. It is also possible to modify the straightforward reverse engineering
approach to integrate component creation activity and extract components from
legacy E-governance software. Such component generation methodologies would be
helpful in creating components for E-governance systems. It would be possible to
trust these components because they would have been tested many times before being
deposited into a Component Repository. E-Governance Software, developed by such
components, would be highly reliable. This paper suggests some component
development methodologies for developing software components that can be reused
in component based E-governance software systems. The proposed methodologies
can be used as a reference model for the development of software components for E-
governance solutions. For the sake of familiarity, the Indian government services have
been used as an example ,but these approaches are applicable for government services
of any country. This work initiates a discussion and also requires more extensive
research oriented studies to be conducted by professionals and academicians in order
to perfect these approaches.

The paper is organized as follows. Related works are briefly described in section
2. In sections 3 and 4, brief introductions to E-Governance and CBSE have been

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 135

given respectively. In section 5, CBSE prospective of E-governance has been
discussed and some component development approaches for an E-governance
software system have been proposed in its various subsections. The discussion and
overheads associated with the approaches are given in section 6. The paper is
concluded in section 7.

2. Related Work
Researchers and practitioners have been considering various aspects of component
based E-Governance software solutions and their related issues. Considerable efforts
have been spent, both by academia and industry, to advance the state-of-the-art
component based E-Governance solutions. Some of these efforts are summarized
below.

The visions associated with E-Governance are to provide fast, improved and
more efficient services, shared resources and services, productivity increase etc. S.
Payrelal has emphasized the need of interoperability between system sources from
different vendors as software components from one vendor can be applicable to
different e-Governance applications [Pyarelal, 2008]. Vaisya and Tiwari [Vaisya and
Tiwari, 2008] have suggested the use of large software components that are reusable
across applications. A white paper published by IAC EA-SIG [Butter et al., 2003] has
supported the use of Component Based Architecture and given some guidelines so
that sound business decisions can be made with respect to this key technological
approach and also addressed the requirement for a component repository for E-
Governance solutions. The paper [Pyarelal, 2005] promotes reusability through
software components in E-Governance software solutions. It also suggested the use of
middleware components such as web application server, inter-application
communication and messaging and the collaboration of software, data interchange
standard etc. [Beer et al., 2006] have proposed a component based software
architecture for E-Governance applications. In their approach they modeled software
components as work flows and executed these by means of an underlying workflow
management. BITS Pilani (India) is working on a project named “eThens”, which is a
Component based framework for E-Governance (see slideshow by Sunder and Harsh).
With the infrastructure in place, government agencies are able to swiftly develop and
deploy E-Government services through reusable software components. For example,
with the assistance of the E-Service generator and its reusable components, a scheme
in which two million Singaporeans were eligible to apply for shares online was made
available within a fortnight [NCS, 2005]. Debnath et al. have presented the feature
model for E-Governance systems. They also described an approach to integrate
formal specifications with feature models in order to produce guidelines to be used in
the context of specification reuse through software components [Debnath et al., 2008].

It is obvious from the above paragraph that Component based development of E-
Governance solutions do facilitate faster, improved and efficient services, productivity
increase, shared resources and services etc. This paper attempts to extend the above
contributions further by proposing some means for component development that
would be highly reusable and composable in nature. This initial proposition of such
methods may be purposefully employed by the professionals and the corresponding
useful feedback may be analyzed. It calls for further extensive research oriented
studies, by all concerned, in order to perfect the details of the model.

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 136

3. E-Governance
In this section some definitions of E-Governance are given.
According to the World bank website (2005) e-Government can be defined as:
“information technologies… that have the ability to transform relations with citizens,
businesses, and other arms of government … [and] can serve a variety of different
ends; better delivery of government services to citizens, improve interactions with
business and industry, citizen empowerment through access to information, or more
efficient government management…benefits can be less corruption, increased
transparency, greater convenience, revenue growth, and/or cost reduction.” E-
Government is the term that reflects the use of information and communication
technology (ICT) in public administration to change structures and processes of
government organizations [Lenk and Traunmüller, 2000].

E-Governance [Bhattacharya, 2002] is defined as the application of electronic
means in (1) the interaction between government and citizens and government and
businesses, as well as, (2) in internal government operations to simplify and improve
democratic, government and business aspects of governance. The external objective
of E-Government is to satisfactorily fulfill the public’s needs and expectations on the
front office side, by simplifying their interaction with various online services. The use
of ICTs in government operations facilitates speedy, transparent, accountable,
efficient and effective interaction with the public, citizens, business and other
agencies. Internal strategic objectives of E-Government in government operations are
to facilitate a speedy, transparent, accountable, efficient and effective process for
performing government administration activities, and which should result in
significant cost savings in government operations. The aim is also to improve the
quality of services and to provide greater opportunities for participation in democratic
institutions and processes [Lambrinoudakis et al., 2003]. However, sometimes E-
Government is defined as the electronic service delivery to citizens, but those working
in the field maintain that E-Government is concerned with far more than simply
making some public information and citizen services available on the Internet. “E-
Government runs wide across all aspects of government, deep within the core of every
governmental entity, and will inevitably be a transforming agent for government and
governance.” [Curtinet et al., 2004]. Given the history of poor governance in
developing nations for instance, E-Government applications may provide a feasible
and affordable platform to enhance governance in these countries [Grönlund and
Horan, 2005].

The following key issues in E-governance were identified and addressed: E-
governance trends, E-governance evolution, E-governance usage, E-governance
websites, E-government services, connectivity, E-governance readiness, citizen
participation, E-governance technology, change management and funding. The
following major challenges in E-governance were identified: trust building in E-
governance, ICT management, and privacy and security [Palanisamy, 2004].

4. Component Based Software Development
In this section the basic theoretical concepts of Component Based Software
Development (CBSD) are provided . Firstly, some standard definitions of software
components and component based development are given and then a brief description
of the activities of Component Based Development follows.

CBSD is a process that emphasizes the design and construction of a software
system using reusable software components. CBSE encompasses two parallel

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 137

engineering activities [Pressman, 2001, p. 847]: Domain Engineering and Component
Based Development. Domain Engineering explores an application domain with the
specific intent of finding functional, behavioural and data components that are
candidates for reuse. These components are placed in reuse libraries. Component-
Based Development elicits requirements from the customer, selects an appropriate
architectural style to meet the objective of the system to be built and then selects,
qualifies, adapts and integrates the components to form a subsystem and the
application as a whole. The new paradigm [Panfilis and Berre, 2004] of assembling
components and writing code to make these components work together has a name,
and of course an acronym, namely Component-Based Development (CBD), while the
whole discipline including components’ identification, development, adoption and
integration in larger software systems is called Component-Based Software
Engineering (CBSE) . Professionals and researchers, both agree that by decomposing
a system into a set of software components, reusability and maintainability can be
achieved. This will result in reduced time-to-market and high quality and scalable
software applications.

CBD includes parallel development activities i.e. development of software
components and development of software with readymade components. Component
development is considered as an important activity. The two processes (one for the
creation of components and the other for the creation of Component Based Software
development) can be performed independently of each other [Tripathi et al., 2008]. In
general terms, a component is considered as a part of a system that performs certain
functionality for that system. In a similar analogy, a software component can be
defined as an independent executable unit that performs certain functionality when it
is plugged into an application software system. Some standard definitions of software
components are given below.

 “A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by
third party.” [Szyperski, 1999].

“A software component is a software element that conforms to a
component model and can be independently deployed and composed
without modification according to a component standard.” [Councill and
Heineman, 2001, p. 7].

4.1. Activities of the Component Based Software Development
From a component-based perspective the process of system design involves the
selection of components, together with an analysis regarding which components can
be acquired from external sources (e.g. COTS) and which must be developed from
scratch. The engineering of component based systems can be considered to be
primarily an assembly and integration process. The vertical partitions depicted in
figure 1 describe the central artifact of component based systems- the components in
various states.

4.1.1. Off-The-Shelf Components [Brown and Wallnau, 1996]
Components come from a variety of sources, some are developed in-house (perhaps
used in a previous project), others are specially purchased from a commercial vendor.
Selection and evaluation of software components are the key activities that take place

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 138

at an early stage in the life cycle of a Component Based System. The evaluation
approach typically involves a combination of paper based studies of the components,
discussion with other users of those components, and hands on benchmarking and
prototyping.

4.1.2. Qualified Components [Brown and Wallnau, 1996]
Typically, a component is described in terms of an interface that provides access to
component functionality. In many cases this interface is the main source of
information about a component. To make use of a component aspects of the
components performance, reliability, usability etc. must also be understood. While a
great deal of information relating to a component and its operation can be found
through hands-on evaluation, a number of gaps will remain. In this process,
components are qualified according to their functional and performance requirements.

4.1.3. Adapted Components [Brown and Wallnau, 1996]
The variety of sources for components leads to a number of problems. These arise
because stand alone components are being used to construct a system where the
components must cooperate. The result is a number of conflicts with respect to
concerns such as sharing resources, version control, environmental setup etc. As a
consequence of these conflicts, components must be adopted based on a common
notion of component citizenship (i.e. based on rules that ensure conflicts among
components are minimized). This usually involves some form of component
wrapping.

4.1.4. Assembled Components [Brown and Wallnau, 1996]
The assembled components are integrated through some well defined infrastructure.
This infrastructure provides the binding that forms a system from the disparate
components.

4.1.5. Updated Components [Brown and Wallnau, 1996]
As with any system, a Component Based System must, over time, involve the fixing
of errors and the addition of new functionality. In order to repair an error, an updated
component is swapped for its defective equivalent thus treating components as plug
replaceable units. Similarly when additional functionality is required it is embodied in
a new component which is added to the system.

Figure 1: Model for architectural assembly of components.

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 139

5. E-Governance and CBSE
In this section a component based approach for E-Governance applications is to be
discussed. Some approaches to software component development (apart from
conventional component development approaches) are also suggested.

It is often the case that [Chandrashekhar, 2005] similar applications are
developed by different groups but there is no possibility of interaction between these
functions within the organization or with outside agencies. It is possible to develop
these functions to be sharable across systems by developing them as reusable
components. These components can be developed independently from user interfaces.
CBSE can play a very significant role in developing E-Governance software. The idea
is to analyze a particular E-governance domain (for example Income Tax, Health
Systems, Police etc) and identify the common functionalities within that domain. Such
a common functionality can be developed as a component and reused in all
applications belonging to that domain. Using the open system approach and reuse
technology, it is possible to develop the reusable software components and make them
widely available so that vendors and software developers can create their own
customized version by using them. Since software components are accessed through
their interfaces and these are written in interface definition language, it should prove
relatively easy to plus them into software systems. It should also be relatively easy to
maintain them. Software components are designed and implemented to be reliable and
hence ensure a high reliability of a system. The major objective should be to identify
common functions in governance services and to develop software components and
make use of them in as many software applications as possible. Software components
can be developed for a variety of purposes including database components (citizen
records, land records etc., for example a citizen database component can be used in
more than one application (within a state) such as a voter list application, health
application and other similar functions may require such databases.) , entity
components (components that map real world objects such as passports, court, offices
etc) and service components (various calculation functionalities, mathematical and
relational functionalities, transfer of data/control etc). Components can also be
developed for networking and operating system level services. These components
may be stored in a commercial repository in order for it to be possible for any user to
use the components. At the time of software development, appropriate components
can be selected and be integrated into the application.
In the following sub-sections we propose some reuse based component development
approaches (apart from conventional component development approaches) that may
be useful for E-Government solutions.

5.1. Component Development by Existing Frameworks of E-
Governance Systems

Frameworks are just one of many reuse techniques [Johnson et al., 1997]. They are an
object-oriented reuse technique and are an intermediate form, part code reuse and part
design reuse. “Frameworks are widely used to reuse design of all or part of a system
that is represented by a set of abstract classes and the way their instances interact”.
A framework is a collection of several fully or partially implemented components
with largely predefined cooperation patterns between them [Fontoura et al., 2000]. If
frameworks for the E-Governance services are available, then it would be a good idea
to develop reusable software components from the existing frameworks. Since
frameworks are designed after making a proper domain analysis, it would thus be very

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 140

easy to sort out common services from these frameworks and make software
components for those services. Components developed from Frameworks, will
simplify the task of developing component for E-governance based solutions.

To demonstrate this idea, we have used an example framework (based on
literature) for a Primary Health Center (PHC) and the primary health care system of
India has been used as an example. India’s rural healthcare system is based on the
Primary Health Centre. The main activities of a PHC are the promotion of food supply
and nutrition, education realting to both health problems and their prevention,
maternal and child health care, immunization, awareness programs, treatment of
common diseases, making essential drugs available, early warning of epidemics,
deployment of control measures etc. A PHC manages different type of records
including those relating to local citizens’ records, disease records and daily work
routine. A PHC collects data from sub-centers and also sends/receives
data/information to the respective community health centers. An example framework
of PHC services is depicted in Figure 2 given below.

Figure 2: An example framework of a Primary Health Center.

By conducting a proper analysis of the framework, the following common services
can be identified.

Community Health Center

Records
&
Reports

Record of target population
Register for inventory
Daily work Diary
Routine health program report
Clinical information
Administrative system

Services

Education regarding health and prevention
Promotion of food supply and nutrition
Maternal and child health care
Immunization
Treatment of common diseases
Control of endemic diseases
Essential drugs
Awareness programs

Primary Health Center

Sub-center

Inter-center coordination through internet/phone/Fax

Inter-center coordination through internet/phone/Fax

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 141

Database Components: Local Citizen Database, Local Disease Record, Inventory
Record Format, Daily Work Diary format, Routine Health Program Report format,
Clinical Information, Employee records, Traditional medical expert systems, Disease
record in rural language, Symptoms record for disease, Special diseases for rural areas
spread by cattle etc. etc.

Awareness program Components: education for common diseases and their cure,
importance of clean atmosphere, precautions at delivery time, prevention from
endemic diseases, information about various government schemes etc.

Entity Components: Management of PHC, Clinical Record, Medical Prescription,
Touch Screen Information System etc.

Service Components: Information Retrieval System, Data Transfer System, Data
Modification System, Printing System, Middleware Components etc.

These common services, extracted by the framework, can be developed as
components and can be stored in a central repository. In India, the actual delivery of
health care is the duty of the state governments within the framework laid down by
the central ministry of health. In India, there are 28 states and primary health services
for states are more or less similar. Software components developed for one state can
be reused in other state E-Governance software systems. If any organization prepares
a central repository of such components then a software developer has the ability to
take advantage of these components and is thus able to develop software systems in
less time and at a reduced cost.

5.2. ‘Component Template’ for Component Based E-Governance
systems

In the majority of the E-governance services provided by the states, the basic
functionality is the same, but some business rules may be different for different states.
For example, the basic function of revenue collection system would be same in the
majority of the states but some minor variations nay occur in a particular state.
Software components should be developed in such a manner that they can be used in
all states E-Governance solutions. One possibility is, to add all possible business rules
(of state governments) within the component’s internal logic. In practical terms, this
would be inefficient as the size of the component would become extremely large. The
other possibility is to use lightweight components that express the internal logic of a
particular E-governance service in a base class and use a common generator function
that will generate the component according to the variations or modifications required
by the specific state’s E-governance application. The idea is to develop a component
in semi-code form (the component will have attributes and functionalities, some of
them possibly in abstract form, common to all the applications) and store it in a
repository. A component may have different variations in functionality for different
states’ applications. In another part of the repository, all the possible variations in
functionality (for different state services) of a component will be stored. For example,
consider the case of a software component 'Student Marking System'. The
functionality of the component may have some variations for different states such as
statistical grading might be used in one state whereas absolute grading is used in
another state; there may be a semester system in one state or a year system in another
state etc. A generic component of “Student Marking System” (having common

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 142

attributes and functionalities)must firstly be developed and this will be stored in a
repository. In another part of the repository there would be the possible functions
(such as one variant for statistical grading, one variant for absolute marking, one
variant for semester system, one variant for yearly system etc) corresponding to this
'generic component'. A numeric binding scheme can be used to show the relation
between the generic component and its corresponding functional/non-functional
properties. For example a generic component, in one repository, is coded a 'C' then the
corresponding properties, in another part of the repository, can be termed as C1.1,
C1.2, C1.3 etc.

If a software developer requires a specific component for his/her application,
then the component developer will use some sort of generation function that will
choose the generic component and the desired functionality (as required by the
specific state application) and by combining both, the final component will be
delivered. The 'generic component' can be transformed into a lightweight component
as per the requirements of the application and it itself carries only those functionalities
and attributes required in this particular application.

The basic idea is that:

1. An E-Governance service component should be designed with attributes and

functionalities that will always be essential in any deployment, and

2. It should have scope for the addition of, or modification in, other
functionalities as per the requirements of the specific application for the
different state governments.

Repository of
'Generic
Components'
(say R1)

Repository of
possible functional/
nonfunctional
features, say R2,
(for components in
R1)

 C C- 1.2 C- 1.1

Figure 3(A): Repository of Generic Components
Figure 3(B): Repository of possible
functional/nonfunctional properties
corresponding to components in R1

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 143

The idea of a “Component Generation Model” is being proposed as follows.

In the first step, a “Generic component” would be worked out by
identifying and implementing the most common attributes and
functionalities required across, and common to all, the application types.
There would be a repository, say R1, in which all the identified “generic
components” will be stored.

There would be another part of the repository, say R2, which would
have the possible functional/non-functional properties, required as
variations in the different application types (for different states).

A component developer will specify the requirements, that s/he
receives from a component user, to be submitted to the ‘Component
Development Interface' being proposed as part of this Component
Generation framework.

Now the proposed “Component Generator” function will choose the
“generic component” (for example- Student mark-sheet) from repository
R1 and the required properties (as desired by the component user) from the
repository R2 (for example say Absolute grading mark etc) and then
generate the component (by combining them both) according to the
requirements of the specific application.

There would be a ‘Verifier’ that will verify the non-functional aspect
of the developed component.

Finally the Component Generation Model may deliver the component.

The realization of this idea will assist a component development organization to
develop components according to the requirements of a Component User. The
question is whether the complete automation of the 'Component Generation Model' is
possible or whether it is necessary for some software environment (to be handled by
professionals with some human interaction) to exist for this purpose.

Component
Development
Interface

R1 R2

‘Component Generator’
Function

Verifier

Output
Component

Figure 4: Proposed idea of ‘Component Generation Modal’.

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 144

5.3. Extracting Components by Component Oriented Reverse
Engineering

Due to the constant change in technology and business rules, the majority of the
legacy E-governance systems require extensive patches and modifications. Inthe
majority of cases, the original developers are not available and development methods
used in legacy E-governance systems may also become outdated. It will become too
difficult to maintain such systems. In spite of this, it is not possible to ignore the
importance of legacy E-governance systems [Bennett, 1995]. Legacy E-Governance
application systems, particularly some of their functions, are too valuable to be
discarded and too expensive to reproduce. Software Reverse Engineering attempts to
understand the existing S/W by reverse engineering (creating documents etc. that may
not have existed) and redesigning and scaling it up into a new S/W as per newer
demands. In this case there is the opportunity tocreate components that will not only
become part of this new E-governance system, to be obtained by forward engineering,
but will be reused multiple times in many E-governance systems to be engineered in
the future. A straightforward reverse engineering approach should be suitably
modified to integrate component creation activity. The procedural nature of Legacy E-
governance software may naturally yield components based on procedural thinking.
Such components may not have many features of modern component technologies.
Thus, these components may not be very suitable for component-oriented
programming. A two-way approach, wherein the structure of the business component
may be separately identified whereas its methods (functions) and attributes may be
extracted from the legacy E-governance software by modifying the traditional reverse
engineering process, is required in this case. The following are the activities
necessary according to this process model.

Analyze the E-governance domain and decompose it in terms of
component.

Firstly, the problem must be analyzed and decomposed in terms of components.

Define the component structure.

A component should be specified such that it covers all the necessary information to
assist a developer in integrating components into their systems. The interface and
semantic specification parts can be designed at an earlier stage and the
implementation part of the component can be brought from the legacy systems.

Perform component identification from legacy E-governance systems.

The component identification exercise firstly requires the software developer to gain
an understanding of the legacy E-Governance system. A software system can be
understood in the following terms: the different elements of the system (e.g.
programs, jobs, data files etc), and the relationship that exists between those elements.

Adding non-functional and other semantic properties in components.

 After refining the computing unit, the next step is to place them into a component
framework. It includes the addition of code for non-functional requirements,
providing some specific documentation, customizing it according to specific
requirements etc.

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 145

6. Limitations and Overheads of Proposed
Approaches

Component based E-governance systems would be easily modifiable as it is possible
to change components with the newer versions. Such systems would be easily
maintainable as a component can also be added, deleted and replaced in a system at
run time . Component based E-governance systems would be more modular, so it is
very easy to test the software. The description above has highlighted the need for
lightweight composable components and raises a few important questions concerning
the solution of the proposed component development models. The idea of these
component development models is very useful to generate lightweight components.
The realization of this idea will assist a component development organization to
develop components according to the requirements of a specific E-Governance
application. The question is whether the complete automation of the 'Component
Generation Model' is possible or whether some software environment (to be handled
by professionals with some human interaction) would be necessary for this purpose.

The Component Development Life Cycle (identification, designing, coding and
testing of a component) for such components would be different to that for the current
development and delivery model. The domain analysis for the identification of
components would also be different. Requirements would be classified in two parts:
the fixed part and its variants. A clear separation of common attributes and
functionalities of a generic component and its possible variants is necessary. It should
be very clear which information should be in the generic components and which
should be in their variants. Design, coding and unit testing processes may have some
newer issues that would not appear in a conventional E-Governance development
process. The question is whether the proposed components would be tested before
depositing them into the repository or whether the testing process will be performed
after the development of a final component. We propose the idea of component
development models. The process of design and development of the proposed
component development models are difficult. The nature of the repository for storing
such components would also be different. The management of these repositories
within the organization would involve some extra overheads. This is also an important
issue as it involves how much time, effort and expertise will be required in order to
realize the idea of the proposed component development models for developing
components for E-Governance systems.

7. Conclusion
The aim of this work is to point out the possibilities of applying the component
generation methodologies for the development of components for component based
E-governance software systems. The use of such components in software
development will result in both quality improvements and cost reductions. We
propose some methods for component creation that address the question, albeit in a
rather limited sense. The approaches suggested in this case are only at the theoretical
level and more work is required by both the academicians and professionals in order
to perfect these approaches. Future work may include the development of a process
model for such Software Components and a study of other software component
related issues.

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 146

References
Backus, M (2001), E-Governance and developing countries: Introduction and examples. Research

Report, IICD Research Brief, No. 3, April 2001.

Bennett (1995), Legacy Systems: Copying with Success, IEEE Software, pp June 19-23.

Beer, D., Kunis, R., and Runger, G. (2006). ‘A Component Based Architecture for E-Government
Applications’, In proceedings of the First international Conference on availability, Reliability
and Security (April 20-22, 2006), Vienna.

Bhattacharya, J. (2002). Middleware and technology standards for E-Governance. India Research Lab,
IBM, 2002.

Brown, A. W. and Wallnau, K.C. (1998). Current State of CBSE. [Electronic Version]. IEEE Software,
Vol. 15, No. 5, pp.37-46.

Butter, J. C., Mago, D. R. and Weiler, J. (2003). ‘Succeeding with CBA in E-Government’, Conceptual
Level White Paper, Developed for the Federal Enterprise Architecture Program Management
Office (FEA-PMO), IAC, EA-SIG, March 2003.

Chandrashekhar, R. (2005), ‘National e-Governance Action Plan (2003-07)’, National e- Governance
Plan: -Workshop with States and UTs, 11-12 March, New Delhi.

Crnkovic I. and Larsson M.(2002), Building Reliable Component Based Systems, ISBN 1- 58053327-
2, Artech House Publishers.

 Councill, W. T. and Heineman, G. T. (Eds.). (2001). Component Based Software Engineering: Putting
the Pieces Togather, Reading, MA: Addison Wesley, 2001.

Curtin, G. G., Sommer, M. H., and Vis-Sommer, V. (Eds.) (2004). The World of E-Government.
Haworth Press: New York.

Debnath, N., Felice, L., Montejano, G. and Riesco, D. (2008), ‘A Future Model of E-Governance
Systems Integrated with Formal Specifications’, Fifth International Conference on Information
technology: New Generations, Las vegas, Nevada, April 7-9, 2008.

Fontoura M., Braga C., Moura L. and Lucena C., (2000) Using Domain Specific Languages to
Instantiate Object-Oriented Frameworks, IEE proc-Softw., Vol 147, No.4, August 2000, Page(s)
109-116.

Grönlund, A. and Horan, T. A. (2005), Introducing e-Gov: History, Definitions, and Issues,
Communications of the Association for Information Systems, Vol.15, 2005.

Johnson R.E., Components, Frameworks, Patterns, Proceedings of 1997 Symposium on Software
Reusability, 1997, pp 10-17.

Lambrinoudakis, C., Gritzalis, S., Dridi, F., and Pernul, G. (2003). “Security requirements for
egovernment services: a methodological approach for developing a common PKI-based security
policy”, in Computer Communications, 26(16), pp. 1873-1883.

Lenk, K. and Traunmüller, R. (2000). “A Framework for Electronic Government”, in Proceedings of
DEXA 2000, London/Greenwich, UK, September 4-8, 2000, pp.340-345.

Mittal, P.A., Kumar, M., Mohania, M.K., Nair,M.,Batra, N.,Roy, P., et al, (2004), A Framework for E-
governance solutions, IBM Journal of Research and Development, Volume 48, Issue 5/6
(September/November), 717-733.

NCS, (2005). Large Scale Deployment of E-Governance Services. NCS- A Member of SingTel group,
NCS Hub, Singapore. URL: http://www.ncs.com.sg.

Palanisamy, R., (2004). Issues and challenges in e-governance planning Electronic Government, an
International Journal, 2004 - Vol. 1, No.3, pp. 253 – 272.

Panfilis, S. D., and Berre, A.J.(2004), ‘Open issues and concerns on Component Based Software
Engineering’, Published in proceedings of ‘Ninth International Workshop On Component
Oriented Programming (WCOP 2004)’, 14-18 June, Oslo, Norway.

International Journal of Public Information Systems, vol 2010:2
www.ijpis.net

Page 147

Pressman R. (2001) S., Software Engineering: A practitioner approach, Sixth Edition, ISBN 007-
124083- 7, TMH, 2001, pages: 847-857.

Prasad, T.V., (2003), ‘e-Governance and Standardization’, published in proceedings of ‘Conference on
Convergent Technologies for Asia Pacific for Asia Pacific Region (TENCON 2003), 15-17 Oct,
vol 1, 198- 202.

Payrelal, S., (2008), ‘Standard and Interoperability: for E-Governance”, Project Report, Management
Development Program for NIC, national Informatics Center, New Delhi (India).

Payrelal, S., (2005). ‘Technical Standards and E-Governance architecture’, Approach paper,
Government of India, National Informatics Center, New Delhi. URL:
http://egovstandards.gov.in

Szyperski, C. (1999). Component Software- Beyond Object Oriented Programming, Reading, MA:
Addition-Weslay.

Sunder, B. and Harsh, J. eThens- A Component Based Framework for E-Governance’, BITS C461,
Software Engineering project, BITS Pilani, India. URL:
www.slideworld.org/viewslides.aspx/2129735

